Potential limitations of transcription terminators used as transgene insulators in adenoviral vectors

The presence of adenoviral cis-elements interfering with the activity of tissue-specific promoters has seriously impaired the use of transcriptional targeting adenoviruses for gene therapy purposes. As an approach to overcome this limitation, transcription terminators were previously employed in cul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2002-02, Vol.9 (3), p.227-231
Hauptverfasser: Buvoli, M, Langer, S J, Bialik, S, Leinwand, LA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of adenoviral cis-elements interfering with the activity of tissue-specific promoters has seriously impaired the use of transcriptional targeting adenoviruses for gene therapy purposes. As an approach to overcome this limitation, transcription terminators were previously employed in cultured cells to insulate a transgene promoter from viral activation. To extend these studies in vivo, we have injected into heart and skeletal muscle, adenoviruses containing the human growth hormone terminator and the cardiac-specific alpha -myosin heavy chain promoter ( alpha MyHC) driving the chloramphenicol acetyltransferase (CAT) reporter gene. Promoterless CAT constructs were also tested to study interfering viral transcription and terminator activity. Here we demonstrate that the presence of a terminator can produce undesirable effects on the activity of heterologous promoters. Our analysis shows that in particular conditions, a terminator can reduce the tissue specificity of the transgene promoter. By RNAse protection assay performed on cardiac myocytes, we also show that adenoviral elements can direct high levels of autonomous transcription within the E1A enhancer region. This finding supports the model that passive readthrough of the transgene promoter is responsible for loss of selective expression.
ISSN:0969-7128
DOI:10.1038/sj/gt/3301640