Coexisting living stromatolites and infaunal metazoans

Microbialites, bioaccretionary structures formed during the growth and metabolism of microorganisms (principally cyanobacteria) were the dominant lifeform in shallow late-Archean and Proterozoic oceans. During the Cambrian radiation of metazoan life, which began ~540 Mya, microbialite abundance and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2016-10, Vol.182 (2), p.539-545
Hauptverfasser: Rishworth, Gavin M., Perissinotto, Renzo, Bird, Matthew S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbialites, bioaccretionary structures formed during the growth and metabolism of microorganisms (principally cyanobacteria) were the dominant lifeform in shallow late-Archean and Proterozoic oceans. During the Cambrian radiation of metazoan life, which began ~540 Mya, microbialite abundance and diversity further declined following a peak in the Mesoproterozoic. Notwithstanding contention, grazing and bioturbation effects of metazoans have been hypothesized as the dominant driver of modern microbialite scarcity. However, this metazoan–microbialite exclusion has not been fully explored in the few extant microbialites. Here we provide further evidence showing that living marine layered microbialites (stromatolites) coexist with a persistent assemblage of benthic macroinvertebrates, as has previously been demonstrated in some thrombolitic (clotted) microbialites. Surprisingly, these metazoans have active habits, such as burrowing, which should be expected to disrupt the layered matrix. As other studies have shown, through a network of burrows, metazoans can exploit local diurnal oxygen refugia within microbialites as well as escape predation. Our results, therefore, add novel evidence in support of the hypotheses that geologically, metazoans are not always incompatible with stromatolites, while ecologically, microbialites may act as micro-refugia for modern metazoans and historically have performed a similar inferred role in past ecosystems.
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-016-3683-5