miR-96 inhibits cardiac hypertrophy by targeting growth factor receptor-bound 2
Increasing evidence has indicated that microRNAs are involved in the pathogenesis of cardiac hypertrophy. However, whether miR-96 is involved in heart diseases, particularly cardiac hypertrophy, remains unclear. In this study, we found that miR-96 is a negative regulator of cardiac hypertrophy. In p...
Gespeichert in:
Veröffentlicht in: | Genetics and molecular research 2015-12, Vol.14 (4), p.18958-18964 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing evidence has indicated that microRNAs are involved in the pathogenesis of cardiac hypertrophy. However, whether miR-96 is involved in heart diseases, particularly cardiac hypertrophy, remains unclear. In this study, we found that miR-96 is a negative regulator of cardiac hypertrophy. In primary cardiomyocytes, overexpression of miR-96 inhibited phenylephrine-induced cardiomyocyte hypertrophy and decreased the mRNA expression of cardiac hypertrophy markers such as atrial natriuretic factor and β-myosin heavy chain. Interestingly, we found that growth factor receptor-bound 2 is a direct target of miR-96, which is a negative regulator of cardiac hypertrophy. Overexpression of miR-96 in cardiomyocytes led to reduced growth factor receptor-bound 2 expression. More importantly, miR-96 repressed the extracellular-regulated protein kinase signaling pathway by targeting growth factor receptor-bound 2 in cardiomyocytes. Our data demonstrate that miR-96 is a negative regulator of cardiac hypertrophy and extracellular-regulated protein kinase signaling, thus offering a new therapeutic strategy for cardiac hypertrophy. |
---|---|
ISSN: | 1676-5680 1676-5680 |
DOI: | 10.4238/2015.December.29.2 |