Deformation field validation and inversion applied to adaptive radiation therapy

Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2013-08, Vol.58 (15), p.5269-5286
Hauptverfasser: Vercauteren, Tom, De Gersem, Werner, Olteanu, Luiza A M, Madani, Indira, Duprez, Fréderic, Berwouts, Dieter, Speleers, Bruno, De Neve, Wilfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development and implementation of chronological and anti-chronological adaptive dose accumulation strategies in adaptive intensity-modulated radiation therapy (IMRT) for head-and-neck cancer. An algorithm based on Newton iterations was implemented to efficiently compute inverse deformation fields (DFs). Four verification steps were performed to ensure a valid dose propagation: intra-cell folding detection finds zero or negative Jacobian determinants in the input DF; inter-cell folding detection is implemented on the resolution of the output DF; a region growing algorithm detects undefined values in the output DF; DF domains can be composed and displayed on the CT data. In 2011, one patient with nonmetastatic head and neck cancer selected from a three phase adaptive DPBN study was used to illustrate the algorithms implemented for adaptive chronological and anti-chronological dose accumulation. The patient received three 18F-FDG-PET CTs prior to each treatment phase and one CT after finalizing treatment. Contour propagation and DF generation between two consecutive CTs was performed in Atlas-based autosegmentation (ABAS). Deformable image registration based dose accumulations were performed on CT1 and CT4. Dose propagation was done using combinations of DFs or their inversions. We have implemented a chronological and anti-chronological dose accumulation algorithm based on DF inversion. Algorithms were designed and implemented to detect cell folding.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/58/15/5269