The Characterization of an Adrenergic Signalling System Involved in the Encystment of the Ocular Pathogen Acanthamoeba spp

The aim of this study was to identify and characterize the receptor system involved in controlling encystment in Acanthamoeba using specific agonists and antagonists and to examine whether endogenous stores of catecholamines are produced by the organism. Acanthamoeba trophozoites suspended in axenic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of eukaryotic microbiology 2016-09, Vol.63 (5), p.629-634
Hauptverfasser: Heaselgrave, Wayne, Kilvington, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to identify and characterize the receptor system involved in controlling encystment in Acanthamoeba using specific agonists and antagonists and to examine whether endogenous stores of catecholamines are produced by the organism. Acanthamoeba trophozoites suspended in axenic growth medium were exposed to adrenoceptor agonists and antagonists to determine which compounds promoted or prevented encystment. Second, trophozoites were cultured in medium containing a catecholamine synthesis inhibitor to investigate the effect this had on natural encystment. Nonspecific adrenoceptor agonists including epinephrine, isoprotenerol, and the selective β1 adrenoceptor agonist dobutamine were found to cause > 90% encystment of Acanthamoeba trophozoites compared to  55%. Cultures of Acanthamoeba with the catecholamine synthesis inhibitor α‐methyl‐p‐tyrosine significantly reduced the level of amoebic encystment compared to controls. In conclusion, Acanthamoeba appear to contain a functional adrenergic receptor system of unknown structure which is involved in initiating the encystment process that can be activated and blocked by β1 agonists and antagonists respectively. Furthermore, the presence of this receptor system in Acanthamoeba indicates that topical β adrenoceptor blockers may be effective adjunct therapy by reducing the transformation of trophozoites into the highly resistant cyst stage.
ISSN:1066-5234
1550-7408
DOI:10.1111/jeu.12312