Damage Identification of Urban Overpass Based on Hybrid Neurogenetic Algorithm Using Static and Dynamic Properties

Urban overpass is an important component of transportation system. Health condition of overpass is essential to guarantee the safe operation of urban traffic. Therefore, damage identification of urban overpass possesses important practical significance. In this paper, finite element model of left au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-10
Hauptverfasser: Jiao, Yu-bo, Gong, Yafeng, Wang, Xianqiang, Liu, Hanbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban overpass is an important component of transportation system. Health condition of overpass is essential to guarantee the safe operation of urban traffic. Therefore, damage identification of urban overpass possesses important practical significance. In this paper, finite element model of left auxiliary bridge of Qianjin Overpass is constructed and vulnerable sections of structure are chosen as objects for damage recognition. Considering the asymmetry of Qianjin bridge, change rate of modal frequency and strain ratio are selected as input parameters for hybrid neurogenetic algorithm, respectively. Identification effects of damage location and severity are investigated and discussed. The results reveal that the proposed method can successfully identify locations and severities with single and multiple damage locations; its interpolation ability is better than extrapolation ability. Comparative analysis with BP neural network is conducted and reveals that the damage identification accuracy of hybrid neurogenetic algorithm is superior to BP. The effectiveness between dynamic and static properties as input variable is also analyzed. It indicates that the identification effect of strain ratios is more satisfactory than frequency ratio.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/404675