Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment
The Food Quality Protection Act (FQPA) of 1996 requires the United States Environmental Protection Agency to consider the cumulative effects of exposure to pesticides having a ‘common mechanism of toxicity.’ This paper reviews the information available on the acute neurotoxicity and mechanisms of to...
Gespeichert in:
Veröffentlicht in: | Toxicology (Amsterdam) 2002-02, Vol.171 (1), p.3-59 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Food Quality Protection Act (FQPA) of 1996 requires the United States Environmental Protection Agency to consider the cumulative effects of exposure to pesticides having a ‘common mechanism of toxicity.’ This paper reviews the information available on the acute neurotoxicity and mechanisms of toxic action of pyrethroid insecticides in mammals from the perspective of the ‘common mechanism’ statute of the FQPA. The principal effects of pyrethroids as a class are various signs of excitatory neurotoxicity. Historically, pyrethroids were grouped into two subclasses (Types I and II) based on chemical structure and the production of either the T (tremor) or CS (choreoathetosis with salivation) intoxication syndrome following intravenous or intracerebral administration to rodents. Although this classification system is widely employed, it has several shortcomings for the identification of common toxic effects. In particular, it does not reflect the diversity of intoxication signs found following oral administration of various pyrethroids. Pyrethroids act in vitro on a variety of putative biochemical and physiological target sites, four of which merit consideration as sites of toxic action. Voltage-sensitive sodium channels, the sites of insecticidal action, are also important target sites in mammals. Unlike insects, mammals have multiple sodium channel isoforms that vary in their biophysical and pharmacological properties, including their differential sensitivity to pyrethroids. Pyrethroids also act on some isoforms of voltage-sensitive calcium and chloride channels, and these effects may contribute to the toxicity of some compounds. Effects on peripheral-type benzodiazepine receptors are unlikely to be a principal cause of pyrethroid intoxication but may contribute to or enhance convulsions caused by actions at other target sites. In contrast, other putative target sites that have been identified in vitro do not appear to play a major role in pyrethroid intoxication. The diverse toxic actions and pharmacological effects of pyrethroids suggest that simple additivity models based on combined actions at a single target are not appropriate to assess the risks of cumulative exposure to multiple pyrethroids. |
---|---|
ISSN: | 0300-483X 1879-3185 |
DOI: | 10.1016/S0300-483X(01)00569-8 |