The Global S[Formula: see text] Tide in Earth's Nutation

Diurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surveys in geophysics 2016-05, Vol.37 (3), p.643-680
Hauptverfasser: Schindelegger, Michael, Einšpigel, David, Salstein, David, Böhm, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere-ocean-driven S[Formula: see text] terms that deviate by more than 30 [Formula: see text]as (microarcseconds) from the VLBI-observed harmonic of [Formula: see text] [Formula: see text]as. Partial deficiencies of these models in the diurnal band are also borne out by a validation of the air pressure tide against barometric in situ estimates as well as comparisons of simulated sea surface elevations with a global network of S[Formula: see text] tide gauge determinations. Credence is lent to the global S[Formula: see text] tide derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF). When averaged over a temporal range of 2004 to 2013, their nutation contributions are estimated to be [Formula: see text] [Formula: see text]as (MERRA) and [Formula: see text] [Formula: see text]as (ECMWF operational), thus being virtually equivalent with the VLBI estimate. This remarkably close agreement will likely aid forthcoming nutation theories in their unambiguous a priori account of Earth's prograde annual celestial motion.
ISSN:0169-3298
1573-0956
DOI:10.1007/s10712-016-9365-3