The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex

The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-10, Vol.139, p.240-248
Hauptverfasser: Puckett, Alexander M., Aquino, Kevin M., Robinson, P.A., Breakspear, Michael, Schira, Mark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue
container_start_page 240
container_title NeuroImage (Orlando, Fla.)
container_volume 139
creator Puckett, Alexander M.
Aquino, Kevin M.
Robinson, P.A.
Breakspear, Michael
Schira, Mark M.
description The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.
doi_str_mv 10.1016/j.neuroimage.2016.06.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826699695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811916302543</els_id><sourcerecordid>1815694446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-3a9552b597aa4fa0cea6e1f8adfe016ac24734930f2b6b2d43c18543e8dca24a3</originalsourceid><addsrcrecordid>eNqNkV1vFCEUhomxsbXtXzAk3ngzK58zcKlN_UiaeNNeExYOu2x2YIQZY_-9TLbWxBtNToDA857DOS9CmJINJbR_f9gkWEqOo93BhrWbDWlB9Qt0QYmWnZYDe7meJe8Upfocva71QAjRVKhX6JwNnFEi5AXa3e8B18nOMc8wTrnYI97DmP1jsmN0uECdcqqAw5JcgxIOuWAP07zv2grJQ5qfH5t4_VNMO5wD3i-jTdjlMsPPK3QW7LHC9dN-iR4-3d7ffOnuvn3-evPhrnNCybnjVkvJtlIP1opgiQPbAw3K-gCtTeuYGLjQnAS27bfMC-6okoKD8s4yYfklenfKO5X8fYE6mzFWB8ejTZCXaqhifa91r-V_oFT2WgjRN_TtX-ghL6W1u1JcDYIIzhqlTpQrudYCwUyljaM8GkrM6ps5mD--mdU3Q1pQ3aRvngos2xH8s_C3UQ34eAKgDe9HhGKqi5Ac-FjAzcbn-O8qvwCNqLAR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1838740432</pqid></control><display><type>article</type><title>The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Puckett, Alexander M. ; Aquino, Kevin M. ; Robinson, P.A. ; Breakspear, Michael ; Schira, Mark M.</creator><creatorcontrib>Puckett, Alexander M. ; Aquino, Kevin M. ; Robinson, P.A. ; Breakspear, Michael ; Schira, Mark M.</creatorcontrib><description>The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.06.019</identifier><identifier>PMID: 27321045</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Anatomy &amp; physiology ; Brain Mapping - methods ; Brain research ; Cerebral Cortex - blood supply ; Cerebral Cortex - physiology ; Colleges &amp; universities ; Councils ; Female ; fMRI ; Grants ; Hemodynamic response ; High-resolution ; Human ; Humans ; Image Processing, Computer-Assisted ; Layers ; Magnetic Resonance Imaging ; Male ; Methods ; Neurovascular Coupling ; NMR ; Nuclear magnetic resonance ; Physiology ; Signal Processing, Computer-Assisted ; Visual cortex ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2016-10, Vol.139, p.240-248</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Oct 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-3a9552b597aa4fa0cea6e1f8adfe016ac24734930f2b6b2d43c18543e8dca24a3</citedby><cites>FETCH-LOGICAL-c485t-3a9552b597aa4fa0cea6e1f8adfe016ac24734930f2b6b2d43c18543e8dca24a3</cites><orcidid>0000-0001-5983-397X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1838740432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27321045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puckett, Alexander M.</creatorcontrib><creatorcontrib>Aquino, Kevin M.</creatorcontrib><creatorcontrib>Robinson, P.A.</creatorcontrib><creatorcontrib>Breakspear, Michael</creatorcontrib><creatorcontrib>Schira, Mark M.</creatorcontrib><title>The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.</description><subject>Adult</subject><subject>Anatomy &amp; physiology</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cerebral Cortex - blood supply</subject><subject>Cerebral Cortex - physiology</subject><subject>Colleges &amp; universities</subject><subject>Councils</subject><subject>Female</subject><subject>fMRI</subject><subject>Grants</subject><subject>Hemodynamic response</subject><subject>High-resolution</subject><subject>Human</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Layers</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Methods</subject><subject>Neurovascular Coupling</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Visual cortex</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1vFCEUhomxsbXtXzAk3ngzK58zcKlN_UiaeNNeExYOu2x2YIQZY_-9TLbWxBtNToDA857DOS9CmJINJbR_f9gkWEqOo93BhrWbDWlB9Qt0QYmWnZYDe7meJe8Upfocva71QAjRVKhX6JwNnFEi5AXa3e8B18nOMc8wTrnYI97DmP1jsmN0uECdcqqAw5JcgxIOuWAP07zv2grJQ5qfH5t4_VNMO5wD3i-jTdjlMsPPK3QW7LHC9dN-iR4-3d7ffOnuvn3-evPhrnNCybnjVkvJtlIP1opgiQPbAw3K-gCtTeuYGLjQnAS27bfMC-6okoKD8s4yYfklenfKO5X8fYE6mzFWB8ejTZCXaqhifa91r-V_oFT2WgjRN_TtX-ghL6W1u1JcDYIIzhqlTpQrudYCwUyljaM8GkrM6ps5mD--mdU3Q1pQ3aRvngos2xH8s_C3UQ34eAKgDe9HhGKqi5Ac-FjAzcbn-O8qvwCNqLAR</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Puckett, Alexander M.</creator><creator>Aquino, Kevin M.</creator><creator>Robinson, P.A.</creator><creator>Breakspear, Michael</creator><creator>Schira, Mark M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5983-397X</orcidid></search><sort><creationdate>20161001</creationdate><title>The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex</title><author>Puckett, Alexander M. ; Aquino, Kevin M. ; Robinson, P.A. ; Breakspear, Michael ; Schira, Mark M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-3a9552b597aa4fa0cea6e1f8adfe016ac24734930f2b6b2d43c18543e8dca24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Anatomy &amp; physiology</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cerebral Cortex - blood supply</topic><topic>Cerebral Cortex - physiology</topic><topic>Colleges &amp; universities</topic><topic>Councils</topic><topic>Female</topic><topic>fMRI</topic><topic>Grants</topic><topic>Hemodynamic response</topic><topic>High-resolution</topic><topic>Human</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Layers</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Methods</topic><topic>Neurovascular Coupling</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Visual cortex</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puckett, Alexander M.</creatorcontrib><creatorcontrib>Aquino, Kevin M.</creatorcontrib><creatorcontrib>Robinson, P.A.</creatorcontrib><creatorcontrib>Breakspear, Michael</creatorcontrib><creatorcontrib>Schira, Mark M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puckett, Alexander M.</au><au>Aquino, Kevin M.</au><au>Robinson, P.A.</au><au>Breakspear, Michael</au><au>Schira, Mark M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>139</volume><spage>240</spage><epage>248</epage><pages>240-248</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27321045</pmid><doi>10.1016/j.neuroimage.2016.06.019</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5983-397X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2016-10, Vol.139, p.240-248
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1826699695
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Adult
Anatomy & physiology
Brain Mapping - methods
Brain research
Cerebral Cortex - blood supply
Cerebral Cortex - physiology
Colleges & universities
Councils
Female
fMRI
Grants
Hemodynamic response
High-resolution
Human
Humans
Image Processing, Computer-Assisted
Layers
Magnetic Resonance Imaging
Male
Methods
Neurovascular Coupling
NMR
Nuclear magnetic resonance
Physiology
Signal Processing, Computer-Assisted
Visual cortex
Young Adult
title The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatiotemporal%20hemodynamic%20response%20function%20for%20depth-dependent%20functional%20imaging%20of%20human%20cortex&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Puckett,%20Alexander%20M.&rft.date=2016-10-01&rft.volume=139&rft.spage=240&rft.epage=248&rft.pages=240-248&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.06.019&rft_dat=%3Cproquest_cross%3E1815694446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1838740432&rft_id=info:pmid/27321045&rft_els_id=S1053811916302543&rfr_iscdi=true