The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex

The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-10, Vol.139, p.240-248
Hauptverfasser: Puckett, Alexander M., Aquino, Kevin M., Robinson, P.A., Breakspear, Michael, Schira, Mark M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gray matter of human cortex is characterized by depth-dependent differences in neuronal activity and connections (Shipp, 2007) as well as in the associated vasculature (Duvernoy et al., 1981). The resolution limit of functional magnetic resonance imaging (fMRI) measurements is now below a millimeter, promising the non-invasive measurement of these properties in awake and behaving humans (Muckli et al., 2015; Olman et al., 2012; Ress et al., 2007). To advance this endeavor, we present a detailed spatiotemporal hemodynamic response function (HRF) reconstructed through the use of high-resolution, submillimeter fMRI. We decomposed the HRF into directions tangential and perpendicular to the cortical surface and found that key spatial properties of the HRF change significantly with depth from the cortical surface. Notably, we found that the spatial spread of the HRF increases linearly from 4.8mm at the gray/white matter boundary to 6.6mm near the cortical surface. Using a hemodynamic model, we posit that this effect can be explained by the depth profile of the cortical vasculature, and as such, must be taken into account to properly estimate the underlying neuronal responses at different cortical depths.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2016.06.019