Integrating Well-Being Information and the Multidimensional Adaptive Prediction Process to Estimate Individual-Level Future Health Care Expenditure Levels
Decades of research exist focusing on the utility of self-reported health risk and status data in health care cost predictive models. However, in many of these studies a limited number of self-reported measures were considered. Compounding this issue, prior research evaluated models specified with a...
Gespeichert in:
Veröffentlicht in: | Population health management 2016-12, Vol.19 (6), p.429-438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Decades of research exist focusing on the utility of self-reported health risk and status data in health care cost predictive models. However, in many of these studies a limited number of self-reported measures were considered. Compounding this issue, prior research evaluated models specified with a single covariate vector and distribution. In this study, the authors incorporate well-being data into the Multidimensional Adaptive Prediction Process (MAPP) and then use a simulation analysis to highlight the value of these findings for future cost mitigation. Data were collected on employees and dependents of a nationally based employer over 36 months beginning in January 2010. The first 2 years of data (2010, 2011) were utilized in model development and selection; 51239 and 54085 members were included in 2010 and 2011, respectively. The final results were based on prospective prediction of 2012 cost levels using 2011 data. The well-being–augmented MAPP results showed a 5.7% and 13% improvement in accurate cost capture relative to a reference modeling approach and the first study of MAPP, respectively. The simulation analysis results demonstrated that reduced well-being risk across a population can help mitigate the expected upward cost trend. This research advances health care cost predictive modeling by incorporating well-being information within MAPP and then leveraging the results in a simulation analysis of well-being improvement. |
---|---|
ISSN: | 1942-7891 1942-7905 |
DOI: | 10.1089/pop.2015.0184 |