Real-Time Assessment of Fatigue in Patients With Multiple Sclerosis: How Does It Relate to Commonly Used Self-Report Fatigue Questionnaires?

Abstract Objectives (1) To assess real-time patterns of fatigue; (2) to assess the association between a real-time fatigue score and 3 commonly used questionnaires (Checklist Individual Strength [CIS] fatigue subscale, Modified Fatigue Impact Scale (MFIS), and Fatigue Severity Scale [FSS]); and (3)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of physical medicine and rehabilitation 2016-11, Vol.97 (11), p.1887-1894.e1
Hauptverfasser: Heine, Martin, MSc, van den Akker, Lizanne Eva, MSc, Blikman, Lyan, MSc, Hoekstra, Trynke, PhD, van Munster, Erik, MD, Verschuren, Olaf, PhD, Visser-Meily, Anne, PhD, Kwakkel, Gert, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Objectives (1) To assess real-time patterns of fatigue; (2) to assess the association between a real-time fatigue score and 3 commonly used questionnaires (Checklist Individual Strength [CIS] fatigue subscale, Modified Fatigue Impact Scale (MFIS), and Fatigue Severity Scale [FSS]); and (3) to establish factors that confound the association between the real-time fatigue score and the conventional fatigue questionnaires in patients with multiple sclerosis (MS). Design Cross-sectional study. Setting MS-specialized outpatient facility. Participants Ambulant patients with MS (N=165) experiencing severe self-reported fatigue. Interventions Not applicable. Main Outcome Measures A real-time fatigue score was assessed by sending participants 4 text messages on a particular day (How fatigued do you feel at this moment?; score range, 0–10). Latent class growth mixed modeling was used to determine diurnal patterns of fatigue. Regression analyses were used to assess the association between the mean real-time fatigue score and the CIS fatigue subscale, MFIS, and FSS. Significant associations were tested for candidate confounders (eg, disease severity, work status, sleepiness). Results Four significantly different fatigue profiles were identified by the real-time fatigue score, namely a stable high (n=79), increasing (n=57), stable low (n=16), and decreasing (n=13). The conventional questionnaires correlated poorly ( r
ISSN:0003-9993
1532-821X
DOI:10.1016/j.apmr.2016.04.019