Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities

We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19, 1–30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2016-03, Vol.472 (2187), p.20150563-20150563
Hauptverfasser: Cheng, Hao-Chung, Hsieh, Min-Hsiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19, 1–30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron–Stein inequality.
ISSN:1364-5021
1471-2946
DOI:10.1098/rspa.2015.0563