FiberSecure suture compared to braided polyester suture

Reliability of wound closure is limited primarily by the capacity of tissues to support conventional sutures (or staples), not by strength of either material per se. We developed FiberSecure™ for closures to surpass tissue strength. We assessed and compared the mechanical and histological performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2017-07, Vol.105 (5), p.1126-1130
Hauptverfasser: Melvin, Alan J, Litsky, Alan S, Juncosa-Melvin, Natalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliability of wound closure is limited primarily by the capacity of tissues to support conventional sutures (or staples), not by strength of either material per se. We developed FiberSecure™ for closures to surpass tissue strength. We assessed and compared the mechanical and histological performance of FiberSecure™ suture versus commercially available braided polyester suture (Mersilene) in the closure of abdominal muscle incisions in miniature swine at approximately 3 months postsurgery. Four incisions were closed in the external oblique muscle of eight Sinclair minipigs. Two wounds were closed with FiberSecure™ suture size 0 and the remaining two with Mersilene suture size 0. At 90 days, specimens were removed for biomechanics and histology. In destructive tensile testing, in the 16 abdominal muscle specimens for the FiberSecure™ suture, muscle tear was not near the suture implantation region, which remained intact. Wound strength met or exceeded strength of neighboring tissue in FiberSecure™ groups, which had peak force of 55.7 ± 22.1 N (mean ± SD) and peak stress of 579.0 ± 159.2 KPa (mean ± SD). For Mersilene, 3 of the 16 samples tore at the suture site and the remaining samples tore through the abdominal muscle not near the implantation region. The wound strength was similar to surrounding tissue, and these specimens had peak force of 51.8 ± 21.7 N and peak stress of 550.3 ± 239.4 KPa (mean ± SD). No significant difference was observed in peak force or stress between groups (p > 0.05), most repairs having met or exceeded native tissue strength by this time point. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1126-1130, 2017.
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33657