Rapid Down-Regulation of Glucocorticoid Receptor Gene Expression in the Dentate Gyrus after Acute Stress in vivo: Role of DNA Methylation and MicroRNA Activity
Background: Although glucocorticoid receptors (GRs) in the hippocampus play a vital role in the regulation of physiological and behavioural responses to stress, the regulation of receptor expression remains unclear. This work investigates the molecular mechanisms underpinning stress-induced changes...
Gespeichert in:
Veröffentlicht in: | Neuroendocrinology 2017-01, Vol.104 (2), p.157-169 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Although glucocorticoid receptors (GRs) in the hippocampus play a vital role in the regulation of physiological and behavioural responses to stress, the regulation of receptor expression remains unclear. This work investigates the molecular mechanisms underpinning stress-induced changes in hippocampal GR mRNA levels in vivo. Methods: Male Wistar rats were killed either under baseline conditions or after forced swim stress (FSS; 15 min in 25°C water). Rat hippocampi were micro-dissected (for mRNA, microRNA, and DNA methylation analysis) or frozen whole (for chromatin immunoprecipitation). In an additional experiment, rats were pre-treated with RU486 (a GR antagonist) or vehicle. Results: FSS evoked a dentate gyrus-specific reduction in GR mRNA levels. This was related to an increased DNMT3a protein association with a discreet region of the Nr3c1 (GR gene) promoter, shown here to undergo increased DNA methylation after FSS. FSS also caused a time-dependent increase in the expression of miR-124a, a microRNA known to reduce GR mRNA expression, which was inversely correlated with a reduction in GR mRNA levels 30 min after FSS. FSS did not affect GR binding to a putative negative glucocorticoid response element within the Nr3c1 gene. Conclusions: Acute stress results in decreased GR mRNA expression specifically in the dentate gyrus. Our results indicate that a complex interplay of multiple molecular mechanisms - including increased DNA methylation of discrete CpG residues within the Nr3c1 gene, most likely facilitated by DNMT3a, and increased expression of miR-124a - could be responsible for these changes. |
---|---|
ISSN: | 0028-3835 1423-0194 1423-0194 |
DOI: | 10.1159/000445875 |