Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses

Different modes of cell death regulate immunity. Whereas necrotic (necroptotic, pyroptotic) cell death triggers inflammation, apoptosis contributes to its resolution. Interleukin-1 (IL-1) family cytokines are key players in this interaction. A number of IL-1 family cytokines are produced by necrotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular cell biology 2016-10, Vol.8 (5), p.426-438
Hauptverfasser: Mora, Javier, Schlemmer, Andrea, Wittig, Ilka, Richter, Florian, Putyrski, Mateusz, Frank, Ann-Christin, Han, Yingying, Jung, Michaela, Ernst, Andreas, Weigert, Andreas, Brüne, Bernhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different modes of cell death regulate immunity. Whereas necrotic (necroptotic, pyroptotic) cell death triggers inflammation, apoptosis contributes to its resolution. Interleukin-1 (IL-1) family cytokines are key players in this interaction. A number of IL-1 family cytokines are produced by necrotic cells to induce sterile inflammation. However, release of IL-1 family proteins from apoptotic cells to regulate inflammation was not described. Here we show that IL-38, a poorly characterized IL-1 family cytokine, is produced selectively by human apoptotic cells to limit inflammation. Depletion of IL-38 in apoptotic cells provoked enhanced IL-6 and IL-8 levels and AP1 activation in co-cultured human primary macrophages, subsequently inducing Th17 cell expansion at the expense of IL-10-producing T cells. IL-38 was N-terminally processed in apoptotic cells to generate a mature cytokine with distinct properties. Both full-length and truncated IL-38 bound to X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL1). However, whereas the IL-38 precursor induced an increase in IL-6 production by human macrophages, truncated IL-38 reduced IL-6 production by attenuating the JNK/AP1 pathway downstream of IL1RAPL1. In conclusion, we identified a mechanism of apoptotic cell-dependent immune regulation requiring IL-38 processing and secretion, which might be relevant in resolution of inflammation, autoimmunity, and cancer.
ISSN:1674-2788
1759-4685
DOI:10.1093/jmcb/mjw006