Adolescent Cannabinoid Exposure Induces a Persistent Sub-Cortical Hyper-Dopaminergic State and Associated Molecular Adaptations in the Prefrontal Cortex
Considerable evidence suggests that adolescent exposure to delta-9-tetrahydrocanabinol (THC), the psychoactive component in marijuana, increases the risk of developing schizophrenia-related symptoms in early adulthood. In the present study, we used a combination of behavioral and molecular analyses...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2017-02, Vol.27 (2), p.1297-1310 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considerable evidence suggests that adolescent exposure to delta-9-tetrahydrocanabinol (THC), the psychoactive component in marijuana, increases the risk of developing schizophrenia-related symptoms in early adulthood. In the present study, we used a combination of behavioral and molecular analyses with in vivo neuronal electrophysiology to compare the long-term effects of adolescent versus adulthood THC exposure in rats. We report that adolescent, but not adult, THC exposure induces long-term neuropsychiatric-like phenotypes similar to those observed in clinical populations. Thus, adolescent THC exposure induced behavioral abnormalities resembling positive and negative schizophrenia-related endophenotypes and a state of neuronal hyperactivity in the mesocorticolimbic dopamine (DA) pathway. Furthermore, we observed profound alterations in several prefrontal cortical molecular pathways consistent with sub-cortical DAergic dysregulation. Our findings demonstrate a profound dissociation in relative risk profiles for adolescent versus adulthood exposure to THC in terms of neuronal, behavioral, and molecular markers resembling neuropsychiatric pathology. |
---|---|
ISSN: | 1047-3211 1460-2199 |
DOI: | 10.1093/cercor/bhv335 |