Calyculin A sensitive protein phosphatase is required for Bacillus anthracis lethal toxin induced cytotoxicity

Previous studies have shown that the Bacillus anthracis lethal toxin can induce both necrosis and apoptosis in mouse macrophage-like J774A.1 cells depending on both the toxin concentration and the phosphatase activity. In this study several protein kinase or phosphatase inhibitors were employed to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current microbiology 2002-02, Vol.44 (2), p.106-111
Hauptverfasser: KAU, Jyh-Hwa, LIN, Ching-Gong, HUANG, Hsin-Hsien, HSU, Hui-Ling, CHEN, Kuo-Ching, WU, Yu-Ping, LIN, Hung-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have shown that the Bacillus anthracis lethal toxin can induce both necrosis and apoptosis in mouse macrophage-like J774A.1 cells depending on both the toxin concentration and the phosphatase activity. In this study several protein kinase or phosphatase inhibitors were employed to evaluate the hypothesis that the lethal toxin induces cell death via protein phosphorylation processes. Pretreatment with a serine/threonine phosphatase inhibitor Calyculin A (300 nM) could inhibit about 78% of cell death induced by the lethal toxin, whereas inhibitors of kinases, such as H7, HA, Sphingosine, and Genestein, but other inhibitors of phosphatases, such as Okadaic acid, Tautomycin, and Cyclosporin A, did not. In addition, recent reports have demonstrated that the MEK1 protein may serve as a proteolytic target within its N-terminus for lethal factor cleavage. In this study, Calyculin A is shown to enhance the phosphorylation of the MEK1 protein. This prevents the cleavage of the MEK1 by lethal factor. These results suggest that a putative Calyculin A-sensitive protein phosphatase is involved in anthrax toxin induced cytotoxicity and that the blocking effect of Calyculin A on lethal factor cytotoxicity may be mediated through the MEK signaling pathway.
ISSN:0343-8651
1432-0991
DOI:10.1007/s00284-001-0059-8