Halogen bonding anion recognition
A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a Lewis base. While these interactions have long been exploited as a tool in crystal engineering their powerful ability to direct supramolecular self-assembly and molecula...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2016-01, Vol.52 (56), p.8645-8658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a Lewis base. While these interactions have long been exploited as a tool in crystal engineering their powerful ability to direct supramolecular self-assembly and molecular recognition processes in solution has, until recently, been overlooked. During the last decade however an ever-increasing number of studies on solution-phase halogen-bond-mediated anion recognition processes has emerged. This Feature Article summarises advancements which have been made thus far in this rapidly developing research area. We survey the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design, before providing an account of our research into the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems.
The development of solution-based anion receptor molecules which exploit halogen bonding interactions is an emerging area of research. This
Feature Article
reviews recent advances which have been made in this rapidly developing field, surveying the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design and describing the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c6cc03638d |