Preparation and wear behaviour of steel turning tools surfaced using the submerged arc welding technique
Nowadays metal machining industry has to meet economically the challenges of the surface quality and efficiency of the machined parts during turning and other metal removing processes. Turning is the process of machining ferrous metals with a hardness value more than 45 HRC in order to obtain the fi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Estonian Academy of Sciences 2016-01, Vol.65 (2), p.117-117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays metal machining industry has to meet economically the challenges of the surface quality and efficiency of the machined parts during turning and other metal removing processes. Turning is the process of machining ferrous metals with a hardness value more than 45 HRC in order to obtain the final product or billet. In the present work, an attempt has been made to prepare a turning tool by surfacing a shank billet made of plain carbon steel using the submerged arc welding technique, with spreading WC-8%Co powder on the surface of the base metal or inserting different amounts of graphite into the flux and afterwards fusing by a metal arc. The flux AMS1 (more than 50% SiO2 and MnO) has a multifunctional purpose in welding. It serves not only to prevent the molten metal from the surrounding air but also to transmit additional elements to the weld during welding. The presumable chemical composition of surfaced tools was ensured by adding chemical elements which form hard carbides, and are high-temperature resistant. The focus was on graphite, tungsten (W), and cobalt (Co) systems in order to obtain layers of high wear resistance. The prepared and blended metal powder was used in two different ways: (1) spread on the surface of the plain carbon steel shank under the flux and (2) inserted into the flux. The obtained results were compared with a commercial turning tool made of high-speed tool steel. The wear resistance of surfaced experimental turning tools showed better wear performance than the standard tool. The wear crater area of the experimental tool measured after the wear test was 0.38 mm super( 2), while the wear of the standard tool exceeded 0.45 mm2; the wear resistance of the experimental turning tool was about 15% higher. |
---|---|
ISSN: | 1736-6046 1736-7530 |
DOI: | 10.3176/proc.2016.2.01 |