Delay-independent stability analysis of linear time-delay systems based on frequency discretization
This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency do...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2016-08, Vol.70, p.288-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency domain is discretized into several sub-intervals, and piecewise constant Lyapunov matrices are employed to analyze the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov lemma, new necessary and sufficient criteria are then obtained for strong delay-independent stability of systems with a single delay. The effectiveness of the proposed method is illustrated by a numerical example. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2015.12.031 |