High-order Discontinuous Galerkin Methods for a class of transport equations with structured populations

In this paper we analyze a discontinuous Galerkin finite element method for approximating solutions to transport equations with certain nonlinearities. We consider models for age-structured populations allowing for a nonlinear removal rate with non-local boundary conditions on the in-flow boundary....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2016-08, Vol.72 (3), p.768-784
Hauptverfasser: Coyle, Joe, Nigam, Nilima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we analyze a discontinuous Galerkin finite element method for approximating solutions to transport equations with certain nonlinearities. We consider models for age-structured populations allowing for a nonlinear removal rate with non-local boundary conditions on the in-flow boundary. The method employs a stabilizing term over the interior edges allowing for convergence in a stronger than usual norm. We establish convergence rates for general higher order basis functions and provide numerical examples consistent with this result.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2016.05.024