Symmetric quiver Hecke algebras and R‐matrices of quantum affine algebras III
Let Cg0 be the category of finite‐dimensional integrable modules over the quantum affine algebra Uq'(g) and let RA∞‐gmod denote the category of finite‐dimensional graded modules over the quiver Hecke algebra of type A∞. In this paper, we investigate the relationship between the categories CAN−1...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2015-08, Vol.111 (2), p.420-444 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Cg0 be the category of finite‐dimensional integrable modules over the quantum affine algebra Uq'(g) and let RA∞‐gmod denote the category of finite‐dimensional graded modules over the quiver Hecke algebra of type A∞. In this paper, we investigate the relationship between the categories CAN−1(1)0 and CAN−1(2)0 by constructing the generalized quantum affine Schur–Weyl duality functors F(t) from RA∞‐gmod to CAN−1(t)0(t=1,2). |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms/pdv032 |