Minor relation for quadrangulations on the projective plane
A quadrangulation on a surface is a map of a simple graph on the surface with each face quadrilateral. In this paper, we prove that for any bipartite quadrangulation G on the projective plane, there exists a sequence of bipartite quadrangulations on the projective plane G=G1,G2,…,Gn such that (i)Gi+...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2016-08, Vol.209, p.296-302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quadrangulation on a surface is a map of a simple graph on the surface with each face quadrilateral. In this paper, we prove that for any bipartite quadrangulation G on the projective plane, there exists a sequence of bipartite quadrangulations on the projective plane G=G1,G2,…,Gn such that (i)Gi+1 is a minor of Gi with |Gi|−2≤|Gi+1|≤|Gi|−1, for i=1,…,n−1,(ii)Gn is isomorphic to either K3,4 or K4,4−−, where K4,4−− is the graph obtained from K4,4 by deleting two independent edges. In order to prove the theorem, we use two local reductions for quadrangulations which transform a quadrangulation Q into another quadrangulation Q′ with Q≥mQ′ and 1≤|Q|−|Q′|≤2. Moreover, we prove a similar result for non-bipartite quadrangulations on the projective plane. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2015.07.037 |