An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays

Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2016-07, Vol.37 (4), p.682-707
Hauptverfasser: Marzban, H. R., Hoseini, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 4
container_start_page 682
container_title Optimal control applications & methods
container_volume 37
creator Marzban, H. R.
Hoseini, S. M.
description Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/oca.2187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825550689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4108642921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3647-fa08e01f298b66c62de2cc25dfc8b807938bcf70e8656425cc285480ea243f713</originalsourceid><addsrcrecordid>eNp10EFrVDEQB_AgFlxbwY8Q8OLltZO8l7y847LYqhRroeIxZLMTmzYvWZNs6_rpTWlRFDzNYX4M8_8T8prBMQPgJ8maY87U-IwsGExTxwQbnpMFsKHvOKjxBXlZyg0AjKznC3K7jBSd89ZjrHTji81Y_U9TfYq02GuckbqUaUnhzsdvNKYYfESTadpWP5tAbYo1p0C3Oa0DzoXe-3pN512ofhuQNoR0g8HsyxE5cCYUfPU0D8mX03dXq_fd-cXZh9XyvLO9HMbOGVAIzPFJraW0km-QW8vFxlm1VjBOvVpbNwIqKeTARdspMShAw4fetViH5O3j3fbS9x2WqueWC0MwEdOuaKa4EAKkmhp98w-9Sbsc23dNARsnmBT8OWhzKiWj09vcsue9ZqAfWtetdf3QeqPdI733Aff_dfpitfzb-1Lxx29v8q2WYz8K_fXTmYbTCS7lZ6Y_9r8Afc6S_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801790980</pqid></control><display><type>article</type><title>An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Marzban, H. R. ; Hoseini, S. M.</creator><creatorcontrib>Marzban, H. R. ; Hoseini, S. M.</creatorcontrib><description>Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2187</identifier><identifier>CODEN: OCAMD5</identifier><language>eng</language><publisher>Glasgow: Blackwell Publishing Ltd</publisher><subject>Chebyshev approximation ; Chebyshev Gauss-Lobatto points ; composite Chebyshev finite difference ; Discretization ; Finite difference method ; hybrid functions ; Mathematical analysis ; Mathematical models ; nonlinear multi-delay ; Nonlinearity ; Optimal control ; Time delay</subject><ispartof>Optimal control applications &amp; methods, 2016-07, Vol.37 (4), p.682-707</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3647-fa08e01f298b66c62de2cc25dfc8b807938bcf70e8656425cc285480ea243f713</citedby><cites>FETCH-LOGICAL-c3647-fa08e01f298b66c62de2cc25dfc8b807938bcf70e8656425cc285480ea243f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2187$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2187$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Marzban, H. R.</creatorcontrib><creatorcontrib>Hoseini, S. M.</creatorcontrib><title>An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays</title><title>Optimal control applications &amp; methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Chebyshev approximation</subject><subject>Chebyshev Gauss-Lobatto points</subject><subject>composite Chebyshev finite difference</subject><subject>Discretization</subject><subject>Finite difference method</subject><subject>hybrid functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>nonlinear multi-delay</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Time delay</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10EFrVDEQB_AgFlxbwY8Q8OLltZO8l7y847LYqhRroeIxZLMTmzYvWZNs6_rpTWlRFDzNYX4M8_8T8prBMQPgJ8maY87U-IwsGExTxwQbnpMFsKHvOKjxBXlZyg0AjKznC3K7jBSd89ZjrHTji81Y_U9TfYq02GuckbqUaUnhzsdvNKYYfESTadpWP5tAbYo1p0C3Oa0DzoXe-3pN512ofhuQNoR0g8HsyxE5cCYUfPU0D8mX03dXq_fd-cXZh9XyvLO9HMbOGVAIzPFJraW0km-QW8vFxlm1VjBOvVpbNwIqKeTARdspMShAw4fetViH5O3j3fbS9x2WqueWC0MwEdOuaKa4EAKkmhp98w-9Sbsc23dNARsnmBT8OWhzKiWj09vcsue9ZqAfWtetdf3QeqPdI733Aff_dfpitfzb-1Lxx29v8q2WYz8K_fXTmYbTCS7lZ6Y_9r8Afc6S_w</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Marzban, H. R.</creator><creator>Hoseini, S. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201607</creationdate><title>An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays</title><author>Marzban, H. R. ; Hoseini, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3647-fa08e01f298b66c62de2cc25dfc8b807938bcf70e8656425cc285480ea243f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chebyshev approximation</topic><topic>Chebyshev Gauss-Lobatto points</topic><topic>composite Chebyshev finite difference</topic><topic>Discretization</topic><topic>Finite difference method</topic><topic>hybrid functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>nonlinear multi-delay</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Time delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzban, H. R.</creatorcontrib><creatorcontrib>Hoseini, S. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzban, H. R.</au><au>Hoseini, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays</atitle><jtitle>Optimal control applications &amp; methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2016-07</date><risdate>2016</risdate><volume>37</volume><issue>4</issue><spage>682</spage><epage>707</epage><pages>682-707</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><coden>OCAMD5</coden><abstract>Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Glasgow</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/oca.2187</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2016-07, Vol.37 (4), p.682-707
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_miscellaneous_1825550689
source Wiley Online Library Journals Frontfile Complete
subjects Chebyshev approximation
Chebyshev Gauss-Lobatto points
composite Chebyshev finite difference
Discretization
Finite difference method
hybrid functions
Mathematical analysis
Mathematical models
nonlinear multi-delay
Nonlinearity
Optimal control
Time delay
title An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20discretization%20scheme%20for%20solving%20nonlinear%20optimal%20control%20problems%20with%20multiple%20time%20delays&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Marzban,%20H.%20R.&rft.date=2016-07&rft.volume=37&rft.issue=4&rft.spage=682&rft.epage=707&rft.pages=682-707&rft.issn=0143-2087&rft.eissn=1099-1514&rft.coden=OCAMD5&rft_id=info:doi/10.1002/oca.2187&rft_dat=%3Cproquest_cross%3E4108642921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801790980&rft_id=info:pmid/&rfr_iscdi=true