An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays
Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gaus...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2016-07, Vol.37 (4), p.682-707 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0143-2087 1099-1514 |
DOI: | 10.1002/oca.2187 |