An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays

Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gaus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2016-07, Vol.37 (4), p.682-707
Hauptverfasser: Marzban, H. R., Hoseini, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper presents a composite Chebyshev finite difference method to numerically solve nonlinear optimal control problems with multiple time delays. The proposed discretization scheme is based on a hybrid of block‐pulse functions and Chebyshev polynomials using the well‐known Chebyshev Gauss–Lobatto points. Our approach is an extension and also a modification of the Chebyshev finite difference scheme. A direct approach is used to transform the delayed optimal control problem into a nonlinear programming problem whose solution is much more easier than the original one. Some useful error bounds are established. In addition, the convergence of the method is discussed. A wide variety of numerical experiments are investigated to show the usefulness and effectiveness of the proposed discretization procedure. The method has a simple structure and can be implemented without too much effort. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0143-2087
1099-1514
DOI:10.1002/oca.2187