The Risk of James-Stein and Lasso Shrinkage

This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2016-11, Vol.35 (8-10), p.1456-1470
1. Verfasser: Hansen, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1470
container_issue 8-10
container_start_page 1456
container_title Econometric reviews
container_volume 35
creator Hansen, Bruce E.
description This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.
doi_str_mv 10.1080/07474938.2015.1092799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4087224621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhgdRsFYfQQi4ESR1LpnbThGvFARb18NkLjZtkqkzKdK3N6F140I8mwOH7__hfACcIzhBUMBryAteSCImGCLanyTmUh6AEaIE5wVi4hCMBiYfoGNwktISQigYJiNwNV-47K1Kqyz47EU3LuWzzlVtplubTXVKIZstYtWu9Ic7BUde18md7fcYvD_cz--e8unr4_Pd7TQ3BRNdzjXFZemtRMJ5TqlnDkOJDOWW8VIYyYXmpB-hYWkKbbjk2pTWE2ulhZiMweWudx3D58alTjVVMq6udevCJikkGGOUSCr-gWJKC4kp6dGLX-gybGLbP6IQl1QyATnsKbqjTAwpRefVOlaNjluFoBpsqx_barCt9rb73M0uV7U-xEZ_hVhb1eltHaKPujVVUuTvim_PK4Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795968070</pqid></control><display><type>article</type><title>The Risk of James-Stein and Lasso Shrinkage</title><source>EBSCOhost Business Source Complete</source><creator>Hansen, Bruce E.</creator><creatorcontrib>Hansen, Bruce E.</creatorcontrib><description>This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</description><identifier>ISSN: 0747-4938</identifier><identifier>EISSN: 1532-4168</identifier><identifier>DOI: 10.1080/07474938.2015.1092799</identifier><language>eng</language><publisher>New York: Taylor &amp; Francis</publisher><subject>Econometrics ; Economic models ; Estimators ; James-Stein ; Lasso ; Least squares method ; Least-squares ; Mathematical analysis ; Parametrization ; Regression ; Regression analysis ; Risk ; Shrinkage ; Simulation</subject><ispartof>Econometric reviews, 2016-11, Vol.35 (8-10), p.1456-1470</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2016</rights><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</citedby><cites>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Hansen, Bruce E.</creatorcontrib><title>The Risk of James-Stein and Lasso Shrinkage</title><title>Econometric reviews</title><description>This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimators</subject><subject>James-Stein</subject><subject>Lasso</subject><subject>Least squares method</subject><subject>Least-squares</subject><subject>Mathematical analysis</subject><subject>Parametrization</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Shrinkage</subject><subject>Simulation</subject><issn>0747-4938</issn><issn>1532-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKw0AUhgdRsFYfQQi4ESR1LpnbThGvFARb18NkLjZtkqkzKdK3N6F140I8mwOH7__hfACcIzhBUMBryAteSCImGCLanyTmUh6AEaIE5wVi4hCMBiYfoGNwktISQigYJiNwNV-47K1Kqyz47EU3LuWzzlVtplubTXVKIZstYtWu9Ic7BUde18md7fcYvD_cz--e8unr4_Pd7TQ3BRNdzjXFZemtRMJ5TqlnDkOJDOWW8VIYyYXmpB-hYWkKbbjk2pTWE2ulhZiMweWudx3D58alTjVVMq6udevCJikkGGOUSCr-gWJKC4kp6dGLX-gybGLbP6IQl1QyATnsKbqjTAwpRefVOlaNjluFoBpsqx_barCt9rb73M0uV7U-xEZ_hVhb1eltHaKPujVVUuTvim_PK4Ng</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Hansen, Bruce E.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161125</creationdate><title>The Risk of James-Stein and Lasso Shrinkage</title><author>Hansen, Bruce E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimators</topic><topic>James-Stein</topic><topic>Lasso</topic><topic>Least squares method</topic><topic>Least-squares</topic><topic>Mathematical analysis</topic><topic>Parametrization</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Shrinkage</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Bruce E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Econometric reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Bruce E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Risk of James-Stein and Lasso Shrinkage</atitle><jtitle>Econometric reviews</jtitle><date>2016-11-25</date><risdate>2016</risdate><volume>35</volume><issue>8-10</issue><spage>1456</spage><epage>1470</epage><pages>1456-1470</pages><issn>0747-4938</issn><eissn>1532-4168</eissn><abstract>This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</abstract><cop>New York</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07474938.2015.1092799</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0747-4938
ispartof Econometric reviews, 2016-11, Vol.35 (8-10), p.1456-1470
issn 0747-4938
1532-4168
language eng
recordid cdi_proquest_miscellaneous_1825549253
source EBSCOhost Business Source Complete
subjects Econometrics
Economic models
Estimators
James-Stein
Lasso
Least squares method
Least-squares
Mathematical analysis
Parametrization
Regression
Regression analysis
Risk
Shrinkage
Simulation
title The Risk of James-Stein and Lasso Shrinkage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Risk%20of%20James-Stein%20and%20Lasso%20Shrinkage&rft.jtitle=Econometric%20reviews&rft.au=Hansen,%20Bruce%20E.&rft.date=2016-11-25&rft.volume=35&rft.issue=8-10&rft.spage=1456&rft.epage=1470&rft.pages=1456-1470&rft.issn=0747-4938&rft.eissn=1532-4168&rft_id=info:doi/10.1080/07474938.2015.1092799&rft_dat=%3Cproquest_cross%3E4087224621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795968070&rft_id=info:pmid/&rfr_iscdi=true