The Risk of James-Stein and Lasso Shrinkage
This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contras...
Gespeichert in:
Veröffentlicht in: | Econometric reviews 2016-11, Vol.35 (8-10), p.1456-1470 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1470 |
---|---|
container_issue | 8-10 |
container_start_page | 1456 |
container_title | Econometric reviews |
container_volume | 35 |
creator | Hansen, Bruce E. |
description | This article compares the mean-squared error (or ℓ
2
risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space. |
doi_str_mv | 10.1080/07474938.2015.1092799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4087224621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhgdRsFYfQQi4ESR1LpnbThGvFARb18NkLjZtkqkzKdK3N6F140I8mwOH7__hfACcIzhBUMBryAteSCImGCLanyTmUh6AEaIE5wVi4hCMBiYfoGNwktISQigYJiNwNV-47K1Kqyz47EU3LuWzzlVtplubTXVKIZstYtWu9Ic7BUde18md7fcYvD_cz--e8unr4_Pd7TQ3BRNdzjXFZemtRMJ5TqlnDkOJDOWW8VIYyYXmpB-hYWkKbbjk2pTWE2ulhZiMweWudx3D58alTjVVMq6udevCJikkGGOUSCr-gWJKC4kp6dGLX-gybGLbP6IQl1QyATnsKbqjTAwpRefVOlaNjluFoBpsqx_barCt9rb73M0uV7U-xEZ_hVhb1eltHaKPujVVUuTvim_PK4Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795968070</pqid></control><display><type>article</type><title>The Risk of James-Stein and Lasso Shrinkage</title><source>EBSCOhost Business Source Complete</source><creator>Hansen, Bruce E.</creator><creatorcontrib>Hansen, Bruce E.</creatorcontrib><description>This article compares the mean-squared error (or ℓ
2
risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</description><identifier>ISSN: 0747-4938</identifier><identifier>EISSN: 1532-4168</identifier><identifier>DOI: 10.1080/07474938.2015.1092799</identifier><language>eng</language><publisher>New York: Taylor & Francis</publisher><subject>Econometrics ; Economic models ; Estimators ; James-Stein ; Lasso ; Least squares method ; Least-squares ; Mathematical analysis ; Parametrization ; Regression ; Regression analysis ; Risk ; Shrinkage ; Simulation</subject><ispartof>Econometric reviews, 2016-11, Vol.35 (8-10), p.1456-1470</ispartof><rights>Copyright © Taylor & Francis Group, LLC 2016</rights><rights>Copyright © Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</citedby><cites>FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Hansen, Bruce E.</creatorcontrib><title>The Risk of James-Stein and Lasso Shrinkage</title><title>Econometric reviews</title><description>This article compares the mean-squared error (or ℓ
2
risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimators</subject><subject>James-Stein</subject><subject>Lasso</subject><subject>Least squares method</subject><subject>Least-squares</subject><subject>Mathematical analysis</subject><subject>Parametrization</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Shrinkage</subject><subject>Simulation</subject><issn>0747-4938</issn><issn>1532-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKw0AUhgdRsFYfQQi4ESR1LpnbThGvFARb18NkLjZtkqkzKdK3N6F140I8mwOH7__hfACcIzhBUMBryAteSCImGCLanyTmUh6AEaIE5wVi4hCMBiYfoGNwktISQigYJiNwNV-47K1Kqyz47EU3LuWzzlVtplubTXVKIZstYtWu9Ic7BUde18md7fcYvD_cz--e8unr4_Pd7TQ3BRNdzjXFZemtRMJ5TqlnDkOJDOWW8VIYyYXmpB-hYWkKbbjk2pTWE2ulhZiMweWudx3D58alTjVVMq6udevCJikkGGOUSCr-gWJKC4kp6dGLX-gybGLbP6IQl1QyATnsKbqjTAwpRefVOlaNjluFoBpsqx_barCt9rb73M0uV7U-xEZ_hVhb1eltHaKPujVVUuTvim_PK4Ng</recordid><startdate>20161125</startdate><enddate>20161125</enddate><creator>Hansen, Bruce E.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161125</creationdate><title>The Risk of James-Stein and Lasso Shrinkage</title><author>Hansen, Bruce E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-7a52bbfd918ef755f6e2091c57d67b8c978a733338a0bc4ac797acbdf3dd9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimators</topic><topic>James-Stein</topic><topic>Lasso</topic><topic>Least squares method</topic><topic>Least-squares</topic><topic>Mathematical analysis</topic><topic>Parametrization</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Shrinkage</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Bruce E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Econometric reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Bruce E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Risk of James-Stein and Lasso Shrinkage</atitle><jtitle>Econometric reviews</jtitle><date>2016-11-25</date><risdate>2016</risdate><volume>35</volume><issue>8-10</issue><spage>1456</spage><epage>1470</epage><pages>1456-1470</pages><issn>0747-4938</issn><eissn>1532-4168</eissn><abstract>This article compares the mean-squared error (or ℓ
2
risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.</abstract><cop>New York</cop><pub>Taylor & Francis</pub><doi>10.1080/07474938.2015.1092799</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-4938 |
ispartof | Econometric reviews, 2016-11, Vol.35 (8-10), p.1456-1470 |
issn | 0747-4938 1532-4168 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825549253 |
source | EBSCOhost Business Source Complete |
subjects | Econometrics Economic models Estimators James-Stein Lasso Least squares method Least-squares Mathematical analysis Parametrization Regression Regression analysis Risk Shrinkage Simulation |
title | The Risk of James-Stein and Lasso Shrinkage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Risk%20of%20James-Stein%20and%20Lasso%20Shrinkage&rft.jtitle=Econometric%20reviews&rft.au=Hansen,%20Bruce%20E.&rft.date=2016-11-25&rft.volume=35&rft.issue=8-10&rft.spage=1456&rft.epage=1470&rft.pages=1456-1470&rft.issn=0747-4938&rft.eissn=1532-4168&rft_id=info:doi/10.1080/07474938.2015.1092799&rft_dat=%3Cproquest_cross%3E4087224621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795968070&rft_id=info:pmid/&rfr_iscdi=true |