The Risk of James-Stein and Lasso Shrinkage
This article compares the mean-squared error (or ℓ 2 risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contras...
Gespeichert in:
Veröffentlicht in: | Econometric reviews 2016-11, Vol.35 (8-10), p.1456-1470 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article compares the mean-squared error (or ℓ
2
risk) of ordinary least squares (OLS), James-Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James-Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space. |
---|---|
ISSN: | 0747-4938 1532-4168 |
DOI: | 10.1080/07474938.2015.1092799 |