I,F-partitions of sparse graphs

A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2016-10, Vol.57, p.1-12
Hauptverfasser: Brandt, Axel, Ferrara, Michael, Kumbhat, Mohit, Loeb, Sarah, Stolee, Derrick, Yancey, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title European journal of combinatorics
container_volume 57
creator Brandt, Axel
Ferrara, Michael
Kumbhat, Mohit
Loeb, Sarah
Stolee, Derrick
Yancey, Matthew
description A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than 52 has an I,F-partition, which is sharp and answers a question of Cranston and West (0000). This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu et al. (2009).
doi_str_mv 10.1016/j.ejc.2016.03.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669816000329</els_id><sourcerecordid>1825546231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cb88f4d1742bee1282b8e707024d7d8e38c26debc36c6753b85ec44fb6bb8ec93</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAEx0ZCDBZye2IyZUUahUiQVmK3Yu4Chtgi9F4u1xVWam-0_6_pPuY-waeA4c1H2XY-dzkWLOZc65PGEz4FWZVZWGUzbjkLJSlTlnF0Qd5wCllDN2s75bZWMdpzCFYUeLoV1QWgkXH7EeP-mSnbV1T3j1N-fsffX0tnzJNq_P6-XjJvNSyynzzpi2aEAXwiGCMMIZ1FxzUTS6MSiNF6pB56XySpfSmRJ9UbROuQT6Ss7Z7fHuGIevPdJkt4E89n29w2FPFowoy0IJCQmFI-rjQBSxtWMM2zr-WOD2IMN2NsmwBxmWS5tkpM7DsYPph--A0ZIPuPPYhIh-ss0Q_mn_ApjeZbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825546231</pqid></control><display><type>article</type><title>I,F-partitions of sparse graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Brandt, Axel ; Ferrara, Michael ; Kumbhat, Mohit ; Loeb, Sarah ; Stolee, Derrick ; Yancey, Matthew</creator><creatorcontrib>Brandt, Axel ; Ferrara, Michael ; Kumbhat, Mohit ; Loeb, Sarah ; Stolee, Derrick ; Yancey, Matthew</creatorcontrib><description>A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than 52 has an I,F-partition, which is sharp and answers a question of Cranston and West (0000). This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu et al. (2009).</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2016.03.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Color ; Combinatorial analysis ; Forests ; Graphs ; Mathematical analysis ; Partitions ; Stars ; Unions</subject><ispartof>European journal of combinatorics, 2016-10, Vol.57, p.1-12</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cb88f4d1742bee1282b8e707024d7d8e38c26debc36c6753b85ec44fb6bb8ec93</citedby><cites>FETCH-LOGICAL-c373t-cb88f4d1742bee1282b8e707024d7d8e38c26debc36c6753b85ec44fb6bb8ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejc.2016.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Brandt, Axel</creatorcontrib><creatorcontrib>Ferrara, Michael</creatorcontrib><creatorcontrib>Kumbhat, Mohit</creatorcontrib><creatorcontrib>Loeb, Sarah</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><creatorcontrib>Yancey, Matthew</creatorcontrib><title>I,F-partitions of sparse graphs</title><title>European journal of combinatorics</title><description>A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than 52 has an I,F-partition, which is sharp and answers a question of Cranston and West (0000). This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu et al. (2009).</description><subject>Color</subject><subject>Combinatorial analysis</subject><subject>Forests</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Partitions</subject><subject>Stars</subject><subject>Unions</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAEx0ZCDBZye2IyZUUahUiQVmK3Yu4Chtgi9F4u1xVWam-0_6_pPuY-waeA4c1H2XY-dzkWLOZc65PGEz4FWZVZWGUzbjkLJSlTlnF0Qd5wCllDN2s75bZWMdpzCFYUeLoV1QWgkXH7EeP-mSnbV1T3j1N-fsffX0tnzJNq_P6-XjJvNSyynzzpi2aEAXwiGCMMIZ1FxzUTS6MSiNF6pB56XySpfSmRJ9UbROuQT6Ss7Z7fHuGIevPdJkt4E89n29w2FPFowoy0IJCQmFI-rjQBSxtWMM2zr-WOD2IMN2NsmwBxmWS5tkpM7DsYPph--A0ZIPuPPYhIh-ss0Q_mn_ApjeZbE</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Brandt, Axel</creator><creator>Ferrara, Michael</creator><creator>Kumbhat, Mohit</creator><creator>Loeb, Sarah</creator><creator>Stolee, Derrick</creator><creator>Yancey, Matthew</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>I,F-partitions of sparse graphs</title><author>Brandt, Axel ; Ferrara, Michael ; Kumbhat, Mohit ; Loeb, Sarah ; Stolee, Derrick ; Yancey, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cb88f4d1742bee1282b8e707024d7d8e38c26debc36c6753b85ec44fb6bb8ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Color</topic><topic>Combinatorial analysis</topic><topic>Forests</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Partitions</topic><topic>Stars</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandt, Axel</creatorcontrib><creatorcontrib>Ferrara, Michael</creatorcontrib><creatorcontrib>Kumbhat, Mohit</creatorcontrib><creatorcontrib>Loeb, Sarah</creatorcontrib><creatorcontrib>Stolee, Derrick</creatorcontrib><creatorcontrib>Yancey, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandt, Axel</au><au>Ferrara, Michael</au><au>Kumbhat, Mohit</au><au>Loeb, Sarah</au><au>Stolee, Derrick</au><au>Yancey, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>I,F-partitions of sparse graphs</atitle><jtitle>European journal of combinatorics</jtitle><date>2016-10</date><risdate>2016</risdate><volume>57</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than 52 has an I,F-partition, which is sharp and answers a question of Cranston and West (0000). This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu et al. (2009).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2016.03.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2016-10, Vol.57, p.1-12
issn 0195-6698
1095-9971
language eng
recordid cdi_proquest_miscellaneous_1825546231
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Color
Combinatorial analysis
Forests
Graphs
Mathematical analysis
Partitions
Stars
Unions
title I,F-partitions of sparse graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=I,F-partitions%20of%20sparse%20graphs&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Brandt,%20Axel&rft.date=2016-10&rft.volume=57&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2016.03.003&rft_dat=%3Cproquest_cross%3E1825546231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825546231&rft_id=info:pmid/&rft_els_id=S0195669816000329&rfr_iscdi=true