I,F-partitions of sparse graphs

A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2016-10, Vol.57, p.1-12
Hauptverfasser: Brandt, Axel, Ferrara, Michael, Kumbhat, Mohit, Loeb, Sarah, Stolee, Derrick, Yancey, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stark-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharging to prove that every graph with maximum average degree less than 52 has an I,F-partition, which is sharp and answers a question of Cranston and West (0000). This result implies that planar graphs of girth at least 10 are star 4-colorable, improving upon previous results of Bu et al. (2009).
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2016.03.003