A Further Study on Wave Propagation Across a Single Joint with Different Roughness

As a key dynamic feature of the rock mass, joint results in wave attenuation when a stress wave propagates across it. An experimental study has obtained the relation between the transmission coefficient and the contact area ratio of joints with different thicknesses (Chen et al. (doi: 10.1007/s00603...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2016-07, Vol.49 (7), p.2701-2709
Hauptverfasser: Chen, X., Li, Jian Chun, Cai, M. F., Zou, Y., Zhao, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a key dynamic feature of the rock mass, joint results in wave attenuation when a stress wave propagates across it. An experimental study has obtained the relation between the transmission coefficient and the contact area ratio of joints with different thicknesses (Chen et al. (doi: 10.1007/s00603-015-0716-z )). However, the spatial geometry of the contact surface also determines the dynamic behavior of the discontinuous masses. Thus, the present study is focused on the effects of distribution and dimension of the sawn notches on the contact surface of the joint, which lead to the different spatial geometry. The joint matching coefficient (JMC) was used in this study to define the contact condition. Using a modified SHPB apparatus, all the bars and specimens were aluminum, and the artificial joint formed a rough surface of the specimen contacted to the output bar. Based on the wave separation method, the incident, reflected and transmitted waves across the joint were acquired from the records of the strain gauges on pressure bars. Then the transmission coefficient and specific stiffness of the joint were obtained. Comparisons of them were made on different JMCs, spatial geometries and thicknesses of the joint.
ISSN:0723-2632
1434-453X
DOI:10.1007/s00603-016-0934-z