A general theory of ignition and combustion of nano- and micron-sized aluminum particles

A general theory of ignition and combustion of nano- and micron-sized aluminum particles is developed. The oxidation process is divided into several stages based on phase transformations and chemical reactions. Characteristic time scales of different processes are compared to identify physicochemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2016-07, Vol.169, p.94-109
Hauptverfasser: Sundaram, Dilip Srinivas, Puri, Puneesh, Yang, Vigor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general theory of ignition and combustion of nano- and micron-sized aluminum particles is developed. The oxidation process is divided into several stages based on phase transformations and chemical reactions. Characteristic time scales of different processes are compared to identify physicochemical phenomena in each stage. In the first stage, the particle is heated to the melting temperature of the aluminum core. Key processes are heat and mass transfer between the gas and particle surface and diffusion of mass and energy inside the particle. The second stage begins upon melting of the aluminum core. Melting results in pressure buildup, thereby facilitating mass diffusion and/or cracking of the oxide layer. Melting is followed by polymorphic phase transformations, which also results in the formation of openings in the oxide layer. These provide pathways for the molten aluminum to react with the oxidizing gas; the ensuing energy release results in ignition of nano-aluminum particles. For large micron-sized particles, ignition is not achieved due to their greater volumetric heat capacity. In the third stage, nanoparticles undergo vigorous self-sustaining reactions with the oxidizing gas. Reactions typically occur heterogeneously in the particle and the burning rate is controlled by chemical kinetics. For large micron-sized particles, polymorphic phase transformations result in the formation of a crystalline oxide layer. The oxide layer melts and particle ignition is achieved. In the fourth stage, the large micron-sized particle burns through gas-phase or surface reactions, depending on the oxidizer and pressure. The burning rate is controlled by mass diffusion through the gas-phase mixture.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2016.04.005