Binary classification SVM-based algorithms with interval-valued training data using triangular and Epanechnikov kernels
Classification algorithms based on different forms of support vector machines (SVMs) for dealing with interval-valued training data are proposed in the paper. L2-norm and L∞-norm SVMs are used for constructing the algorithms. The main idea allowing us to represent the complex optimization problems a...
Gespeichert in:
Veröffentlicht in: | Neural networks 2016-08, Vol.80, p.53-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classification algorithms based on different forms of support vector machines (SVMs) for dealing with interval-valued training data are proposed in the paper. L2-norm and L∞-norm SVMs are used for constructing the algorithms. The main idea allowing us to represent the complex optimization problems as a set of simple linear or quadratic programming problems is to approximate the Gaussian kernel by the well-known triangular and Epanechnikov kernels. The minimax strategy is used to choose an optimal probability distribution from the set and to construct optimal separating functions. Numerical experiments illustrate the algorithms. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2016.04.005 |