A Study of BER-Optimal ADC-Based Receiver for Serial Links

Analog-to-digital converter (ADC)-based multi-Gb/s serial link receivers have gained increasing attention in the backplane community due to the desire for higher I/O throughput, ease of design portability, and flexibility. However, the power dissipation in such receivers is dominated by the ADC. ADC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2016-05, Vol.63 (5), p.693-704
Hauptverfasser: Yingyan Lin, Min-Sun Keel, Faust, Adam, Aolin Xu, Shanbhag, Naresh R., Rosenbaum, Elyse, Singer, Andrew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analog-to-digital converter (ADC)-based multi-Gb/s serial link receivers have gained increasing attention in the backplane community due to the desire for higher I/O throughput, ease of design portability, and flexibility. However, the power dissipation in such receivers is dominated by the ADC. ADCs in serial links employ signal-to-noise-and-distortion ratio (SNDR) and effective-number-of-bit (ENOB) as performance metrics as these are the standard for generic ADC design. This paper studies the use of information-based metrics such as bit-error-rate (BER) to design a BER-optimal ADC (BOA) for serial links. Channel parameters such as the m-clustering value and the threshold non-uniformity metric h t are introduced and employed to quantify the BER improvement achieved by a BOA over a conventional uniform ADC (CUA) in a receiver. Analytical expressions for BER improvement are derived and validated through simulations. A prototype BOA is designed, fabricated and tested in a 1.2 V, 90 nm LP CMOS process to verify the results of this study. BOA's variable-threshold and variable-resolution configurations are implemented via an 8-bit single-core, multiple-output passive digital-to-analog converter (DAC), which incurs an additional power overhead of
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2016.2529284