Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular

In this work, we present an analysis based on a combination of the Laplace transform and homotopy methods in order to provide a new analytical approximated solutions of the fractional partial differential equations (FPDEs) in the Liouville-Caputo and Caputo-Fabrizio sense. So, a general scheme to fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2016-06, Vol.2016 (1), p.1-17, Article 164
Hauptverfasser: Morales-Delgado, Victor Fabian, Gómez-Aguilar, José Francisco, Yépez-Martínez, Huitzilin, Baleanu, Dumitru, Escobar-Jimenez, Ricardo Fabricio, Olivares-Peregrino, Victor Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present an analysis based on a combination of the Laplace transform and homotopy methods in order to provide a new analytical approximated solutions of the fractional partial differential equations (FPDEs) in the Liouville-Caputo and Caputo-Fabrizio sense. So, a general scheme to find the approximated solutions of the FPDE is formulated. The effectiveness of this method is demonstrated by comparing exact solutions of the fractional equations proposed with the solutions here obtained.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-016-0891-6