Multifunctional nanoanalytics and long-range scanning probe microscope using a nanopositioning and nanomeasuring machine

An interferometer-based metrological scanning probe microscope (SPM) is successfully integrated into our nanopositioning and nanomeasuring machine (NPM machine) for high-precision measurements with nanometre uncertainty over a range of 25 mm × 25 mm × 5 mm. Both devices were developed at the Institu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2014-04, Vol.25 (4), p.44006-7
Hauptverfasser: Vorbringer-Dorozhovets, N, Goj, B, Machleidt, T, Franke, K-H, Hoffmann, M, Manske, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An interferometer-based metrological scanning probe microscope (SPM) is successfully integrated into our nanopositioning and nanomeasuring machine (NPM machine) for high-precision measurements with nanometre uncertainty over a range of 25 mm × 25 mm × 5 mm. Both devices were developed at the Institute of Process Measurement and Sensor Technology of Ilmenau University of Technology, Germany. Outstanding results were achieved for different measurement tasks. With the NPM machine, truly long-range and long-term measurements are possible. Due to the tip wear, an automatic SPM cantilever replacement is preferable. Such a tip replacement is also required for the integration of multifunctional nanoanalytics. For example, for Kelvin probe force microscopy (KPFM), the measurement of topography and surface potential with different SPM tips is necessary. For this purpose, an electromagnetic tip changer was designed. The tip changer comprises three SPM probes. In order to retrieve the previous tip positions, additional fiducial marks were developed. The repeatability of relocation is less than 10 nm. The automatic tip changer and fiducial marks are integrated into a sample holder. The tip changer in combination with fiducial marks allows scanning distances three times longer (with the same type of SPM probes) and multifunctional nanoanalytics (with different SPM probes with special properties). Sample KPFM measurements are demonstrated. The developed tip changer, including special fiducial marks, improves the performance and functionality of the NPM machine crucially.
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/25/4/044006