Boundary crossing probabilities for high-dimensional Brownian motion

The two-sided nonlinear boundary crossing probabilities for one-dimensional Brownian motion and related processes have been studied in Fu and Wu (2010) based on the finite Markov chain imbedding technique. It provides an efficient numerical method to computing the boundary crossing probabilities. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2016-06, Vol.53 (2), p.543-553
Hauptverfasser: Fu, James C., Wu, Tung-Lung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two-sided nonlinear boundary crossing probabilities for one-dimensional Brownian motion and related processes have been studied in Fu and Wu (2010) based on the finite Markov chain imbedding technique. It provides an efficient numerical method to computing the boundary crossing probabilities. In this paper we extend the above results for high-dimensional Brownian motion. In particular, we obtain the rate of convergence for high-dimensional boundary crossing probabilities. Numerical results are also provided to illustrate our results.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2016.19