Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel
The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath m...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-07, Vol.669, p.48-57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111}γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2016.05.041 |