Copy-Move Forgery Detection Technique for Forensic Analysis in Digital Images
Due to the powerful image editing tools images are open to several manipulations; therefore, their authenticity is becoming questionable especially when images have influential power, for example, in a court of law, news reports, and insurance claims. Image forensic techniques determine the integrit...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the powerful image editing tools images are open to several manipulations; therefore, their authenticity is becoming questionable especially when images have influential power, for example, in a court of law, news reports, and insurance claims. Image forensic techniques determine the integrity of images by applying various high-tech mechanisms developed in the literature. In this paper, the images are analyzed for a particular type of forgery where a region of an image is copied and pasted onto the same image to create a duplication or to conceal some existing objects. To detect the copy-move forgery attack, images are first divided into overlapping square blocks and DCT components are adopted as the block representations. Due to the high dimensional nature of the feature space, Gaussian RBF kernel PCA is applied to achieve the reduced dimensional feature vector representation that also improved the efficiency during the feature matching. Extensive experiments are performed to evaluate the proposed method in comparison to state of the art. The experimental results reveal that the proposed technique precisely determines the copy-move forgery even when the images are contaminated with blurring, noise, and compression and can effectively detect multiple copy-move forgeries. Hence, the proposed technique provides a computationally efficient and reliable way of copy-move forgery detection that increases the credibility of images in evidence centered applications. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2016/8713202 |