Global well-posedness of the 3D incompressible porous media equation with critical dissipation in Triebel-Lizorkin spaces
In this paper, we study the global well-posedness of the 3D incompressible critical dissipative porous media equation with small initial data in the Triebel-Lizorkin space F p , q s ( R 3 ) . By a pointwise exponential decay estimate on the Poisson semigroup e − t ν − Δ and the Fourier localization...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2016-06, Vol.2016 (1), p.1-14, Article 117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the global well-posedness of the 3D incompressible critical dissipative porous media equation with small initial data in the Triebel-Lizorkin space
F
p
,
q
s
(
R
3
)
. By a pointwise exponential decay estimate on the Poisson semigroup
e
−
t
ν
−
Δ
and the Fourier localization technique, we generalize the global well-posedness in the Sobolev spaces
H
p
s
(
R
3
)
=
F
p
,
2
s
(
R
3
)
and
H
s
(
R
3
)
=
F
2
,
2
s
(
R
3
)
into the general Triebel-Lizorkin spaces
F
p
,
q
s
(
R
3
)
with
s
>
3
p
,
p
,
q
∈
(
1
,
∞
)
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-016-0625-4 |