Global well-posedness of the 3D incompressible porous media equation with critical dissipation in Triebel-Lizorkin spaces

In this paper, we study the global well-posedness of the 3D incompressible critical dissipative porous media equation with small initial data in the Triebel-Lizorkin space F p , q s ( R 3 ) . By a pointwise exponential decay estimate on the Poisson semigroup e − t ν − Δ and the Fourier localization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2016-06, Vol.2016 (1), p.1-14, Article 117
Hauptverfasser: Wu, Xing, Yu, Yanghai, Tang, Yanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the global well-posedness of the 3D incompressible critical dissipative porous media equation with small initial data in the Triebel-Lizorkin space F p , q s ( R 3 ) . By a pointwise exponential decay estimate on the Poisson semigroup e − t ν − Δ and the Fourier localization technique, we generalize the global well-posedness in the Sobolev spaces H p s ( R 3 ) = F p , 2 s ( R 3 ) and H s ( R 3 ) = F 2 , 2 s ( R 3 ) into the general Triebel-Lizorkin spaces F p , q s ( R 3 ) with s > 3 p , p , q ∈ ( 1 , ∞ ) .
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-016-0625-4