Aptazyme–Gold Nanoparticle Sensor for Amplified Molecular Probing in Living Cells
To date, a few of DNAzyme-based sensors have been successfully developed in living cells; however, the intracellular aptazyme sensor has remained underdeveloped. Here, the first aptazyme sensor for amplified molecular probing in living cells is developed. A gold nanoparticle (AuNP) is modified with...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-06, Vol.88 (11), p.5981-5987 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To date, a few of DNAzyme-based sensors have been successfully developed in living cells; however, the intracellular aptazyme sensor has remained underdeveloped. Here, the first aptazyme sensor for amplified molecular probing in living cells is developed. A gold nanoparticle (AuNP) is modified with substrate strands hybridized to aptazyme strands. Only the target molecule can activate the aptazyme and then cleave and release the fluorophore-labeled substrate strands from the AuNP, resulting in fluorescence enhancement. The process is repeated so that each copy of target can cleave multiplex fluorophore-labeled substrate strands, amplifying the fluorescence signal. Results show that the detection limit is about 200 nM, which is 2 or 3 orders of magnitude lower than that of the reported aptamer-based adenosine triphosphate (ATP) sensors used in living cells. Furthermore, it is demonstrated that the aptazyme sensor can readily enter living cells and realize intracellular target detection. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.6b00999 |