Iron binary and ternary coatings with molybdenum and tungsten

[Display omitted] •High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode.•Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2016-10, Vol.383, p.346-352
Hauptverfasser: Yar-Mukhamedova, Gulmira, Ved, Maryna, Sakhnenko, Nikolay, Karakurkchi, Anna, Yermolenko, Iryna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode.•Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface.•It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2016.04.046