Sintering of Beta-Tricalcium Phosphate Scaffold Using Polyurethane Template
Porous beta-tricalcium phosphate (β-TCP) bioceramic has been reported as synthetic graft for cancellous bone substitute due to its biocompatibility and biodegradability properties. A highly porous and interconnected porosity architecture of bone scaffold facilitates attachment and in-growth of new b...
Gespeichert in:
Veröffentlicht in: | Key Engineering Materials 2016-05, Vol.694, p.94-98 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous beta-tricalcium phosphate (β-TCP) bioceramic has been reported as synthetic graft for cancellous bone substitute due to its biocompatibility and biodegradability properties. A highly porous and interconnected porosity architecture of bone scaffold facilitates attachment and in-growth of new bone tissue. β-TCP foam, a porous 3-dimensional scaffold was fabricated by employing polymeric foam replica method in this study. Polyurethane (PU) foam was used as the sacrificial template, in which β-TCP slurry with powder to water ratio of 10g:10ml was coated on PU template and sintered to 1100, 1200, 1250 and 1300°C. Observation on architecture of the foam, macrostructure and microstructure of pores and surface topography of porous strut showed that sintering at 1250°C produced sufficient densification of grains and micropores on the β-TCP strut. The β-TCP foams exhibited high porosity (92 – 97%) and large pore size (200 - 750um) that resemble cancellous bone structure. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.694.94 |