The polymer physics of single DNA confined in nanochannels

In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in colloid and interface science 2016-06, Vol.232, p.80-100
Hauptverfasser: Dai, Liang, Renner, C. Benjamin, Doyle, Patrick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 80
container_title Advances in colloid and interface science
container_volume 232
creator Dai, Liang
Renner, C. Benjamin
Doyle, Patrick S.
description In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given. [Display omitted] •This review systematically presents the recent progress in polymer physics of DNA in nanochannels•This review highlights the similarities among polymers in confinement, under stretching force, and in semidilute solution.•This review describes the connection between polymer behaviors in confinement and under topological constraints (knots).
doi_str_mv 10.1016/j.cis.2015.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825496319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001868615002225</els_id><sourcerecordid>1808634740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-9235ae032dd719f2d38fd7ab201154873f77df668f5a85b623cb801968ee7d893</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EgvL4AVxQjlwSvHb8CJxQeUoILnC2EntNXaVOiVuk_ntStXAETquVvhmNZgg5BVoABXkxLWxIBaMgCmAFpWyHjEArnnPF1C4ZUUoh11LLA3KY0nR4mVBinxwwqTQDQUfk8nWC2bxrVzPss_lklYJNWeezFOJ7i9nN83Vmu-hDRJeFmMU6dnZSx4htOiZ7vm4TnmzvEXm7u30dP-RPL_eP4-un3JZaLPKKcVEj5cw5BZVnjmvvVN0MsUGUQ1qvlPNSai9qLRrJuG00hUpqROV0xY_I-cZ33ncfS0wLMwvJYtvWEbtlMqCZKCvJ4T8o1ZKXqqR_o6oCzqCUaxQ2qO27lHr0Zt6HWd2vDFCzHsJMzTCEWQ9hgJmh5kFztrVfNjN0P4rv5gfgagMMTeJnwN4kGzBadKFHuzCuC7_YfwEFi5W4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791321460</pqid></control><display><type>article</type><title>The polymer physics of single DNA confined in nanochannels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dai, Liang ; Renner, C. Benjamin ; Doyle, Patrick S.</creator><creatorcontrib>Dai, Liang ; Renner, C. Benjamin ; Doyle, Patrick S.</creatorcontrib><description>In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given. [Display omitted] •This review systematically presents the recent progress in polymer physics of DNA in nanochannels•This review highlights the similarities among polymers in confinement, under stretching force, and in semidilute solution.•This review describes the connection between polymer behaviors in confinement and under topological constraints (knots).</description><identifier>ISSN: 0001-8686</identifier><identifier>EISSN: 1873-3727</identifier><identifier>DOI: 10.1016/j.cis.2015.12.002</identifier><identifier>PMID: 26782150</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Blob theory ; Confinement ; Deoxyribonucleic acid ; DNA ; Dynamic mechanical properties ; Dynamics ; Humans ; Monte Carlo simulation ; Nanochannel ; Nanostructure ; Polymer physics ; Polymers ; Simulation</subject><ispartof>Advances in colloid and interface science, 2016-06, Vol.232, p.80-100</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-9235ae032dd719f2d38fd7ab201154873f77df668f5a85b623cb801968ee7d893</citedby><cites>FETCH-LOGICAL-c485t-9235ae032dd719f2d38fd7ab201154873f77df668f5a85b623cb801968ee7d893</cites><orcidid>0000-0002-4672-6283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001868615002225$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26782150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Liang</creatorcontrib><creatorcontrib>Renner, C. Benjamin</creatorcontrib><creatorcontrib>Doyle, Patrick S.</creatorcontrib><title>The polymer physics of single DNA confined in nanochannels</title><title>Advances in colloid and interface science</title><addtitle>Adv Colloid Interface Sci</addtitle><description>In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given. [Display omitted] •This review systematically presents the recent progress in polymer physics of DNA in nanochannels•This review highlights the similarities among polymers in confinement, under stretching force, and in semidilute solution.•This review describes the connection between polymer behaviors in confinement and under topological constraints (knots).</description><subject>Animals</subject><subject>Blob theory</subject><subject>Confinement</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dynamic mechanical properties</subject><subject>Dynamics</subject><subject>Humans</subject><subject>Monte Carlo simulation</subject><subject>Nanochannel</subject><subject>Nanostructure</subject><subject>Polymer physics</subject><subject>Polymers</subject><subject>Simulation</subject><issn>0001-8686</issn><issn>1873-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPwzAQhC0EgvL4AVxQjlwSvHb8CJxQeUoILnC2EntNXaVOiVuk_ntStXAETquVvhmNZgg5BVoABXkxLWxIBaMgCmAFpWyHjEArnnPF1C4ZUUoh11LLA3KY0nR4mVBinxwwqTQDQUfk8nWC2bxrVzPss_lklYJNWeezFOJ7i9nN83Vmu-hDRJeFmMU6dnZSx4htOiZ7vm4TnmzvEXm7u30dP-RPL_eP4-un3JZaLPKKcVEj5cw5BZVnjmvvVN0MsUGUQ1qvlPNSai9qLRrJuG00hUpqROV0xY_I-cZ33ncfS0wLMwvJYtvWEbtlMqCZKCvJ4T8o1ZKXqqR_o6oCzqCUaxQ2qO27lHr0Zt6HWd2vDFCzHsJMzTCEWQ9hgJmh5kFztrVfNjN0P4rv5gfgagMMTeJnwN4kGzBadKFHuzCuC7_YfwEFi5W4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Dai, Liang</creator><creator>Renner, C. Benjamin</creator><creator>Doyle, Patrick S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4672-6283</orcidid></search><sort><creationdate>201606</creationdate><title>The polymer physics of single DNA confined in nanochannels</title><author>Dai, Liang ; Renner, C. Benjamin ; Doyle, Patrick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-9235ae032dd719f2d38fd7ab201154873f77df668f5a85b623cb801968ee7d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blob theory</topic><topic>Confinement</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dynamic mechanical properties</topic><topic>Dynamics</topic><topic>Humans</topic><topic>Monte Carlo simulation</topic><topic>Nanochannel</topic><topic>Nanostructure</topic><topic>Polymer physics</topic><topic>Polymers</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Liang</creatorcontrib><creatorcontrib>Renner, C. Benjamin</creatorcontrib><creatorcontrib>Doyle, Patrick S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advances in colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Liang</au><au>Renner, C. Benjamin</au><au>Doyle, Patrick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The polymer physics of single DNA confined in nanochannels</atitle><jtitle>Advances in colloid and interface science</jtitle><addtitle>Adv Colloid Interface Sci</addtitle><date>2016-06</date><risdate>2016</risdate><volume>232</volume><spage>80</spage><epage>100</epage><pages>80-100</pages><issn>0001-8686</issn><eissn>1873-3727</eissn><abstract>In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given. [Display omitted] •This review systematically presents the recent progress in polymer physics of DNA in nanochannels•This review highlights the similarities among polymers in confinement, under stretching force, and in semidilute solution.•This review describes the connection between polymer behaviors in confinement and under topological constraints (knots).</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26782150</pmid><doi>10.1016/j.cis.2015.12.002</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4672-6283</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-8686
ispartof Advances in colloid and interface science, 2016-06, Vol.232, p.80-100
issn 0001-8686
1873-3727
language eng
recordid cdi_proquest_miscellaneous_1825496319
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Blob theory
Confinement
Deoxyribonucleic acid
DNA
Dynamic mechanical properties
Dynamics
Humans
Monte Carlo simulation
Nanochannel
Nanostructure
Polymer physics
Polymers
Simulation
title The polymer physics of single DNA confined in nanochannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20polymer%20physics%20of%20single%20DNA%20confined%20in%20nanochannels&rft.jtitle=Advances%20in%20colloid%20and%20interface%20science&rft.au=Dai,%20Liang&rft.date=2016-06&rft.volume=232&rft.spage=80&rft.epage=100&rft.pages=80-100&rft.issn=0001-8686&rft.eissn=1873-3727&rft_id=info:doi/10.1016/j.cis.2015.12.002&rft_dat=%3Cproquest_cross%3E1808634740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791321460&rft_id=info:pmid/26782150&rft_els_id=S0001868615002225&rfr_iscdi=true