Vacuum energy density and pressure near a soft wall

Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly")....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-05, Vol.93 (10), Article 105010
Hauptverfasser: Murray, S. W., Whisler, C. M., Fulling, S. A., Wagner, Jef, Carter, H. B., Lujan, David, Mera, F. D., Settlemyre, T. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 93
creator Murray, S. W.
Whisler, C. M.
Fulling, S. A.
Wagner, Jef
Carter, H. B.
Lujan, David
Mera, F. D.
Settlemyre, T. E.
description Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.
doi_str_mv 10.1103/PhysRevD.93.105010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825494992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825494992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-b12914f7f82c460db37526121b9f65aef60efa099f2cba8afc4c6761e7d4065f3</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EElXpCzB5ZEm413acekTlV6oEQsBqOc41FKVJsRNQ3p6iANN3hqNvOIydIuSIIM8f3sb0SJ-XuZE5QgEIB2wmVAkZgDCH_4xwzBYpvcMeNZgSccbki_PDsOXUUnwdeU1t2vQjd23Nd5FSGiLxllzkjqcu9PzLNc0JOwquSbT43Tl7vr56Wt1m6_ubu9XFOvNSqD6rUBhUoQxL4ZWGupJlITQKrEzQhaOggYIDY4LwlVu64JXXpUYqawW6CHLOzqbfXew-Bkq93W6Sp6ZxLXVDsrgUhTLKGLFXxaT62KUUKdhd3GxdHC2C_Ylk_yJZI-0USX4DU9xbEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825494992</pqid></control><display><type>article</type><title>Vacuum energy density and pressure near a soft wall</title><source>American Physical Society Journals</source><creator>Murray, S. W. ; Whisler, C. M. ; Fulling, S. A. ; Wagner, Jef ; Carter, H. B. ; Lujan, David ; Mera, F. D. ; Settlemyre, T. E.</creator><creatorcontrib>Murray, S. W. ; Whisler, C. M. ; Fulling, S. A. ; Wagner, Jef ; Carter, H. B. ; Lujan, David ; Mera, F. D. ; Settlemyre, T. E.</creatorcontrib><description>Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.93.105010</identifier><language>eng</language><subject>Anomalies ; Boundaries ; Dirichlet problem ; Energy density ; Mathematical models ; Scalars ; Ultraviolet ; Walls</subject><ispartof>Physical review. D, 2016-05, Vol.93 (10), Article 105010</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-b12914f7f82c460db37526121b9f65aef60efa099f2cba8afc4c6761e7d4065f3</citedby><cites>FETCH-LOGICAL-c324t-b12914f7f82c460db37526121b9f65aef60efa099f2cba8afc4c6761e7d4065f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Murray, S. W.</creatorcontrib><creatorcontrib>Whisler, C. M.</creatorcontrib><creatorcontrib>Fulling, S. A.</creatorcontrib><creatorcontrib>Wagner, Jef</creatorcontrib><creatorcontrib>Carter, H. B.</creatorcontrib><creatorcontrib>Lujan, David</creatorcontrib><creatorcontrib>Mera, F. D.</creatorcontrib><creatorcontrib>Settlemyre, T. E.</creatorcontrib><title>Vacuum energy density and pressure near a soft wall</title><title>Physical review. D</title><description>Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.</description><subject>Anomalies</subject><subject>Boundaries</subject><subject>Dirichlet problem</subject><subject>Energy density</subject><subject>Mathematical models</subject><subject>Scalars</subject><subject>Ultraviolet</subject><subject>Walls</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EElXpCzB5ZEm413acekTlV6oEQsBqOc41FKVJsRNQ3p6iANN3hqNvOIydIuSIIM8f3sb0SJ-XuZE5QgEIB2wmVAkZgDCH_4xwzBYpvcMeNZgSccbki_PDsOXUUnwdeU1t2vQjd23Nd5FSGiLxllzkjqcu9PzLNc0JOwquSbT43Tl7vr56Wt1m6_ubu9XFOvNSqD6rUBhUoQxL4ZWGupJlITQKrEzQhaOggYIDY4LwlVu64JXXpUYqawW6CHLOzqbfXew-Bkq93W6Sp6ZxLXVDsrgUhTLKGLFXxaT62KUUKdhd3GxdHC2C_Ylk_yJZI-0USX4DU9xbEQ</recordid><startdate>20160509</startdate><enddate>20160509</enddate><creator>Murray, S. W.</creator><creator>Whisler, C. M.</creator><creator>Fulling, S. A.</creator><creator>Wagner, Jef</creator><creator>Carter, H. B.</creator><creator>Lujan, David</creator><creator>Mera, F. D.</creator><creator>Settlemyre, T. E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160509</creationdate><title>Vacuum energy density and pressure near a soft wall</title><author>Murray, S. W. ; Whisler, C. M. ; Fulling, S. A. ; Wagner, Jef ; Carter, H. B. ; Lujan, David ; Mera, F. D. ; Settlemyre, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-b12914f7f82c460db37526121b9f65aef60efa099f2cba8afc4c6761e7d4065f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Boundaries</topic><topic>Dirichlet problem</topic><topic>Energy density</topic><topic>Mathematical models</topic><topic>Scalars</topic><topic>Ultraviolet</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, S. W.</creatorcontrib><creatorcontrib>Whisler, C. M.</creatorcontrib><creatorcontrib>Fulling, S. A.</creatorcontrib><creatorcontrib>Wagner, Jef</creatorcontrib><creatorcontrib>Carter, H. B.</creatorcontrib><creatorcontrib>Lujan, David</creatorcontrib><creatorcontrib>Mera, F. D.</creatorcontrib><creatorcontrib>Settlemyre, T. E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, S. W.</au><au>Whisler, C. M.</au><au>Fulling, S. A.</au><au>Wagner, Jef</au><au>Carter, H. B.</au><au>Lujan, David</au><au>Mera, F. D.</au><au>Settlemyre, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum energy density and pressure near a soft wall</atitle><jtitle>Physical review. D</jtitle><date>2016-05-09</date><risdate>2016</risdate><volume>93</volume><issue>10</issue><artnum>105010</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.</abstract><doi>10.1103/PhysRevD.93.105010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-05, Vol.93 (10), Article 105010
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_miscellaneous_1825494992
source American Physical Society Journals
subjects Anomalies
Boundaries
Dirichlet problem
Energy density
Mathematical models
Scalars
Ultraviolet
Walls
title Vacuum energy density and pressure near a soft wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum%20energy%20density%20and%20pressure%20near%20a%20soft%20wall&rft.jtitle=Physical%20review.%20D&rft.au=Murray,%20S.%E2%80%89W.&rft.date=2016-05-09&rft.volume=93&rft.issue=10&rft.artnum=105010&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.93.105010&rft_dat=%3Cproquest_cross%3E1825494992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825494992&rft_id=info:pmid/&rfr_iscdi=true