Vacuum energy density and pressure near a soft wall

Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly")....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-05, Vol.93 (10), Article 105010
Hauptverfasser: Murray, S. W., Whisler, C. M., Fulling, S. A., Wagner, Jef, Carter, H. B., Lujan, David, Mera, F. D., Settlemyre, T. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.93.105010