Quantitative modeling of betavoltaic microbattery performance

•A Monte-Carlo simulation model to predict the power generation of p–n junction-based betavoltaic devices.•The model provides two key aspects of information: electron–hole pair generation rate and device power output.•Analysis of the effects of the temperature, semiconductor materials with different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2016-04, Vol.240, p.131-137
Hauptverfasser: Zhang, Kan, Gui, Gui, Pathak, Piyush, Seo, Jung-Hun, Blanchard, James P., Ma, Zhenqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A Monte-Carlo simulation model to predict the power generation of p–n junction-based betavoltaic devices.•The model provides two key aspects of information: electron–hole pair generation rate and device power output.•Analysis of the effects of the temperature, semiconductor materials with different bandgap energies (Si, Ge and SiC) and different isotope sources (Ni-63 and tritium). This paper presents a simulation model to predict the power generation of p–n junction-based betavoltaic devices. The model provides two key aspects of information for device evaluation: electron–hole pair generation rate and device power output. A Monte-Carlo model was used to simulate generation rate and the device performance was simulated using the generation rate with Synopsys® Medici. We investigated the effects of the temperature, semiconductor materials with different bandgap energies (Si, Ge and SiC) and different isotope sources (Ni-63 and tritium) on the performance of betavoltaic microbatteries. Our simulation results indicate that a homojunction structure with wide bandgap semiconductor is more favorable for betavoltaic device performance. A simple wide bandgap p–n junction cell with an embedded radioisotope source could be the most promising candidate for betavoltaic applications.
ISSN:0924-4247
1873-3069
DOI:10.1016/j.sna.2016.01.028