Axisymmetric response of a bi-material full-space reinforced by an interfacial thin film
Analytical treatment of a linear elastic isotropic bi-material full-space reinforced by an interfacial thin film under axisymmetric normal loading is addressed. The thin film is modeled as an extensible membrane perfectly bonded to the half-spaces. By virtue of Love’s potential function and Hankel i...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2016-07, Vol.90, p.251-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analytical treatment of a linear elastic isotropic bi-material full-space reinforced by an interfacial thin film under axisymmetric normal loading is addressed. The thin film is modeled as an extensible membrane perfectly bonded to the half-spaces. By virtue of Love’s potential function and Hankel integral transform, elastic fields of the system are explicitly written in the form of semi-infinite line integrals. The analytical results are verified by the special cases corresponding to the surface stiffened half-space and classical bi-material problem. The limiting cases of reinforced homogeneous full-space and inextensible membrane are presented and discussed. The proposed formulation is also applicable for studying reinforced auxetic materials with negative Poisson’s ratio. The surface/interface effect on the elastic responses of two perfectly bonded half-spaces is also simulated by assigning equivalent surface elastic constant to the membrane stiffness. Effects of thin film stiffness, material properties, loading depth, and surface/interface effect are studied by some numerical examples. |
---|---|
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2016.02.011 |