Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent, but it can be parametrized via the noninteracting energy-momentum dispersion [epsilon...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-05, Vol.93 (19), Article 195134 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent, but it can be parametrized via the noninteracting energy-momentum dispersion [epsilon]k, except for pseudogap features right at the Fermi edge. That is, it can be written as [Sigma]([epsilon]k,[omega]), with two energylike parameters ([epsilon], [omega]) instead of three (kx, ky, and [omega]). The self-energy has two rather broad and weakly dispersing high-energy features and a sharp [omega]=[epsilon]k feature at high temperatures, which turns to [omega]=-[epsilon]k at low temperatures. Altogether this yields a Z- and reversed-Z-like structure, respectively, for the imaginary part of [Sigma]([epsilon]k,[omega]). We attribute the change of the low-energy structure to antiferromagnetic spin fluctuations. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.93.195134 |