A sharp Lagrange multiplier theorem for nonlinear programs

For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises natur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2016-07, Vol.65 (3), p.513-530
1. Verfasser: Galan, MRuiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises naturally in minimax theory—of a finite family of suitable functions. Even if we dispense with the Slater condition, it is proven that the infsup-convexity is nothing more than an equivalent reformulation of the Fritz John conditions for the nonlinear optimization problem under consideration.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-015-0379-z