A sharp Lagrange multiplier theorem for nonlinear programs
For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises natur...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2016-07, Vol.65 (3), p.513-530 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises naturally in minimax theory—of a finite family of suitable functions. Even if we dispense with the Slater condition, it is proven that the infsup-convexity is nothing more than an equivalent reformulation of the Fritz John conditions for the nonlinear optimization problem under consideration. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-015-0379-z |